Star-company.ru

Лайфхаки от Кризиса
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Стохастический анализ и его методы

Стохастический анализ

Стохастический анализ представляет собой методику исследования факторов, связь которых с результативным показателем в отличие от функциональной является неполной, вероятностной (корреляционной). Если при функциональной (полной) зависимости с изменением аргумента всегда происходит соответствующее изменение функции, то при корреляционной связи изменение аргумента может дать несколько значений прироста функции в зависимости от сочетания других факторов, определяющих данный показатель. Например, производительность труда при одном и том же уровне фондовооруженности может быть неодинаковой на разных предприятиях. Это зависит от оптимальности сочетания других факторов, воздействующих на этот показатель.

Корреляционная (стохастическая) связь – это неполная, вероятностная зависимость между показателями, которая проявляется только в массе наблюдений. Отличают парную и множественную корреляцию.

Парная корреляция – это связь между двумя показателями, один из которых является факторным, а второй – результативным.

Множественная корреляция – возникает от взаимодействия нескольких факторов с результативным показателем.

Необходимые условия применения корреляционного анализа:

1. Наличие большого количества наблюдений о величине исследуемых факторных и результативных показателей (в динамике или за текущий год по совокупности однородных объектов).

2. Исследуемые факторы должны иметь количественное измерение и отражение в тех или иных источниках информации.

Применение корреляционного анализа позволяет решить следующие задачи:

— определить изменение результативного показателя под воздействием одного или несколько факторов, т.е. определить насколько единиц изменяется величина результативного показателя при изменении факторного на единицу;

— установить относительную степень зависимости результативного показателя от каждого фактора.

Корреляционный анализ – метод установления связи и измерения ее тесноты между наблюдениями, которые можно считать случайными и выбранными из совокупности, распределенной по многомерному нормальному закону.

Корреляционной связью называется такая статистическая связь, при которой различным значениям одной переменной соответствуют разные средние значения другой. Корреляционная связь может возникать несколькими путями. Важнейший из них – причинная зависимость вариации результативного признака от изменения факторного. Кроме того, такой вид связи может наблюдаться между двумя следствиями одной причины. Основной особенностью корреляционного анализа следует признать то, что он устанавливает лишь факт наличия связи и степень ее полноты, не вскрывая ее причин.

В экономическом анализе теснота измеряется линейным коэффициентом корреляции. Коэффициент корреляции при прямолинейной форме связи между факторами х и у определяется следующим образом:

При измерении тесноты связи при криволинейной форме зависимости используется не линейный коэффициент корреляции, а корреляционной отношение, которое рассчитывается по формуле:

где

Данная формула является универсальной. Ее можно применять для исчисления коэффициента корреляции при любой форме зависимости. Однако для его нахождения требуется предварительное решение уравнения регрессии и расчет по нему теоретических (выравненных) значений результативного показателя для каждого наблюдения исследуемой выборки.

Значения коэффициента корреляции изменяются в интервале [–1; +1]. Значение г = –1 свидетельствует о наличии жестко детерминированной обратно пропорциональной связи между факторами, г = +1 соответствует жестко детерминированной связи с прямо пропорциональной зависимостью факторов. Если линейной связи между факторами не наблюдается, то r = 0. Другие значения коэффициента корреляции свидетельствуют о наличии стохастической связи, причем, чем ближе /r/ к единице, тем связь теснее.

При /r/ 0,7 – тесной.

Если коэффициент корреляции возвести в квадрат, получим коэффициент детерминации. Он показывает насколько процентов результативный показатель зависит от факторного.

Практическая реализация корреляционного анализа включает следующие этапы:

— постановка задачи и выбор признаков;

— сбор информации и ее первичная обработка (группировки, исключение, аномальных наблюдений, проверка нормальности одномерного распределения);

— предварительная характеристика взаимосвязей (аналитические группировки, графики);

— устранение мультиколлинеарности (взаимозависимости факторов) и уточнение набора показателей путем расчета парных коэффициентов корреляции;

— исследование факторной зависимости и проверка ее значимости;

— оценка результатов анализа и подготовка рекомендаций по их практическому использованию.

Регрессионный анализ состоит из нескольких этапов .

На первом этапе определяются факторы, которые оказывают воздействие на изучаемый показатель, и отбираются наиболее существенные для корреляционного анализа. Отбор факторов – очень важный момент в экономическом анализе: от того, насколько правильно он сделан, зависит точность выводов по итогам анализа. Не рекомендуется включать в корреляционную модель взаимосвязанные факторы. Если парный коэффициент корреляции между двумя факторами больше 0,85, то по правилам корреляционного анализа один из них необходимо исключить, иначе это приведет к искажению результатов анализа; нельзя включать в корреляционную модель факторы, связь которых с результативным показателем носит функциональный характер.

Большую помощь при отборе факторов для корреляционной модели оказывают аналитические группировки, способ сравнения параллельных и динамических рядов, линейные графики. С их помощью можно определить наличие, направление и форму зависимости между изучаемыми показателями. Отбор факторов можно производить также в процессе решения задачи корреляционного анализа на основе оценки их значимости по критерию Стьюдента.

На втором этапе собирается исходная информация по каждому факторному и результативному показателям. Она должна быть проверена на достоверность, на однородность и на соответствие закону нормального распределения.

В первую очередь необходимо убедиться в достоверности информации, насколько она соответствует объективной действительности. Использование недостоверной, неточной информации приведет к неточным результатам анализа и к неправильным выводам.

Одно из условий корреляционного анализа – однородность исследуемой информации относительно распределения ее около среднего уровня. Если в совокупности имеются группы объектов, которые значительно отличаются от среднего уровня, то это говорит о неоднородности исходной информации.

Критерием однородности информации служат среднеквадратическое отклонение и коэффициент вариации, которые рассчитываются по каждому факторному и результативному показателю.

Среднеквадратическое отклонение показывает абсолютное отклонение индивидуальных значений от среднеарифметической.

Оно определяется по формуле:

Коэффициент вариации показывает относительную меру отклонения отдельных значений от среднеарифметической.

Для его расчета используется формула:

Чем больше коэффициент вариации, тем относительно больший разброс и меньшая выравненность изучаемых объектов. Изменчивость вариационного ряда принято считать незначительной, если вариация не превышает 10%, средней – если вариация составляет 10-12%, значительной — когда она больше 20%, но не превышает 33%. Если же вариация выше 33%, то это свидетельствует о неоднородности информации и о необходимости исключения нетипичных наблюдений, которые обычно бывают в первых и последних ранжированных рядах выборки.

Читать еще:  Анализ использования производственных запасов

Следующее требование к исходной информации – подчинение ее закону нормального распределения. Для количественной оценки степени отклонения информации от нормального распределения служат отношение показателя асимметрии к ее ошибке и отношение показателя эксцесса к его ошибке.

Показатель асимметрии (А) и его ошибка (me) рассчитываются по следующим формулам:

Показатель эксцесса (Е) и его ошибка (me) рассчитываются следующим образом:

В симметричном распределении А = 0. Отклонение от нуля указывает на наличие асимметрии в распределении данных около средней величины. Отрицательная асимметрия свидетельствует о том, что преобладают данные с большими значениями, а с меньшими значениями встречаются значительно реже. Положительная асимметрия показывает, что чаще встречаются данные с небольшими значениями.

В нормальном распределении показатель эксцесса Е = 0. Если Е > 0, то данные густо сгруппированы около средней, образуя островершинность. Если Е Fтабл, то гипотеза об отсутствии связи между исследуемыми показателями отвергается.

Критерий Фишера рассчитывается следующим образом:

, где

Yxi – индивидуальные значения результативного показателя, рассчитанные по уравнению;

— среднее значение результативного показателя, рассчитанного по уравнению;

Yi – фактическое индивидуальное значение результативного показателя;

m – количество параметров в уравнении связи, учитывая свободный член уравнения;

n – количество наблюдений.

Для оценки точности уравнения связи рассчитывается средняя ошибка аппроксимации. Чем меньше теоретическая линия регрессии (рассчитанная по уравнению) отклоняется от фактической (эмпирической), тем меньше ее величина, а это свидетельствует о правильности подбора формы уравнения связи.

Средняя ошибка аппроксимации рассчитывается по формуле:

О полноте уравнения связи можно судить по коэффициентам множественной регрессии и детерминации. Если их значения близки к 1, значит в корреляционную модель удалось включить наиболее существенные факторы, на долю которых приходится основная вариация результативного показателя.

Влияние каждого фактора на прирост (отклонение от плана) результативного показателя рассчитывается по формуле:

Коэффициенты регрессии в уравнении связи имеют разные единицы измерения, что делает их несопоставимыми, если возникает вопрос о сравнительной силе воздействия факторов на результативный показатель. Чтобы привести их в сопоставимый вид, все переменные уравнения регрессии выражают в долях среднеквадратического отклонения, т.е. рассчитывают стандартизированные коэффициенты регрессии или бетта-коэффициенты (β)

Бета-коэффициенты показывают, что если величина фактора увеличится на одно среднеквадратическое отклонение, то соответствующая зависимая переменная увеличится или уменьшится на долю своего среднеквадратического отклонения. Сопоставление бетта-коэффициентов позволяет сделать вывод о сравнительной степени воздействия каждого фактора на величину результативного показателя.

Коэффициент эластичности рассчитывается по формуле:

Коэффициент эластичности показывает, на сколько процентов в среднем изменится функция с изменением аргумента на 1%.

Перечисленное многообразие методов предоставляет аналитику широкие возможности в выборе инструментария исследования, как в экономическом анализе, так и в рамках финансового анализа. Выбор того или иного способа или приема из перечисленных определяется целью экономического (финансового) анализа, требованиями к степени детализации (глубины) анализа, к точности результатов (например, «разложение» результативного показателя по факторам), характером взаимосвязи между показателями, характером аналитических задач.

Независимо от выбранных способов алгоритм решения практически любой аналитической задачи содержит приемы сравнения, группировки, балансовой увязки и графический, которые рассматриваются как способы обработки первичной, исходной информации.

Не нашли то, что искали? Воспользуйтесь поиском:

Методы детерминированного и стохастического факторного анализа (стр. 3 из 4)

Индексный метод основан на построении факторных (агрегированных) индексов. Применение агрегированных индексов означает последовательное элиминирование влияния отдельных факторов на совокупный показатель. Преимущество индексного метода заключается в том, что он позволяет произвести «разложение» по факторам не только абсолютное изменение показателя, но и относительное, что особенно важно при изучении факторных динамических моделей.

Так, индекс изменения выпуска продукции можно выразить через произведение индексов численности и выработки:

С помощью индексного метода можно определить влияние факторов, в том числе структурных сдвигов, на абсолютное отклонение результативного показателя.

Индексный метод целесообразно применять в том случае, когда каждый фактор является сложным (совокупным) показателем. Например, численность персонала предприятия представляет собой соотношение численности отдельных категорий работников или рабочих различных разрядов. Изменение объёма выпуска продукции происходит не только под влиянием численности и выработки, но и структурных сдвигов в составе персонала.

Интегральный способ позволяет достичь полного разложения результативного показателя по факторам и носит универсальный характер, т.е. применим к мультипликативным, кратным и смешанным моделям.

Операция вычисления определённого интеграла по заданной подынтегральной функции и заданному интервалу интегрирования выполняется на ПЭВМ.

Метод цепных подстановок.

Метод цепных подстановок заключается в определении ряда промежуточных значений результативного показателя путем последовательной замены базисных значений факторов на отчетные. Данный способ основан на элиминировании. Элиминировать — значит устранить, исключить воздействие всех факторов на величину результативного показателя, кроме одного. Предполагается, что все факторы изменяются независимо друг от друга, т.е. сначала изменяется один фактор, а все остальные остаются без изменения, потом изменяются два при неизменности остальных и т.д.

В общем виде применение способа цепных постановок можно описать следующим образом:

Преимущества данного способа: универсальность применения; простота расчетов.

Недостаток метода состоит в том, что, в зависимости от выбранного порядка замены факторов, результаты факторного разложения имеют разные значения. Это связано с тем, что в результате применения этого метода образуется некий неразложимый остаток, который прибавляется к величине влияния последнего фактора. На практике точностью оценки факторов пренебрегают, выдвигая на первый план относительную значимость влияния того или иного фактора. Однако существуют определенные правила, определяющие последовательность подстановки:

— при наличии в факторной модели количественных и качественных показателей в первую очередь рассматривается изменение количественных факторов;

если модель представлена несколькими количественными и качественными показателями, то в первую очередь определяется влияние факторов первого порядка, затем второго и т.д.

Под количественным факторамипри анализе понимают те, которые выражают количественную определенность явлений и могут быть получены путем непосредственного учета (количество рабочих, станков, сырья и т.д.).

Качественные факторыопределяют внутренние качества, признаки и особенности изучаемых явлений (производительность труда, качество продукции, средняя продолжительность рабочего дня и т.д.).

Метод абсолютных разниц.

Метод абсолютных разниц является модификацией способа цепной подстановки. Изменение результативного показателя за счет каждого фактора определяется как произведение абсолютного прироста исследуемого фактора на базисную величину факторов, которые находятся справа от него и отчетную величину факторов, расположенных слева от него в модели.

Читать еще:  Корреляционный анализ производительности труда

Метод относительных разниц.

Метод относительных разниц также является одной из модификаций способа цепной подстановки. Применяется для измерения влияния факторов на прирост результативного показателя в мультипликативных моделях. Он используется в случаях, когда исходные данные содержат определенные ранее относительные отклонения факторных показателей в процентах.

Для мультипликативных моделей типа у = а . в . с методика анализа следующая:

находят относительное отклонение каждого факторного показателя:

определяют отклонение результативного показателя у за счет каждого фактора:

3.1.2.Способы оценки влияния факторов

в детерминированном факторном анализе.

Задача детерминированного факторного анализа заключается в определении или количественной оценке влияния каждого фактора на результативный показатель.

Наиболее часто применяется способ цепных подстановок, основанный, как и ряд других, на элиминировании. Элиминировать – это значит устранить, исключить воздействие всех факторов на величину результативного показателя, кроме одного.

Количество расчётов может быть несколько сокращено, если использовать модификацию способа цепных подстановок – способ разниц.

Изменение результативного показателя за счёт каждого фактора способом разниц определяется как произведение отклонения изучаемого фактора на базисное или отчётное значение другого (других) факторов в зависимости от выбранной последовательности подстановки.

3.2. Стохастический факторный анализ.

Стохастический анализ направлен на изучение косвенных связей, т. е. опосредованных факторов (в случае невозмож­ности определения непрерывной цепи прямой связи). Из этого вытекает важный вывод о соотношении детерминированного и стохастического анализа: так как прямые связи необходимо изучать в первую очередь, то стохастический анализ носит вспомогательный характер. Стохастический анализ выступает в качестве инструмента углубления детерминированного ана­лиза факторов, по которым нельзя построить детерминиро­ванную модель.

Стохастическое моделирование факторных систем взаимо­связей отдельных сторон хозяйственной деятельности опира­ется на обобщение закономерностей варьирования значений экономических показателей — количественных характеристик факторов и результатов хозяйственной деятельности. Количе­ственные параметры связи выявляются на основе сопоставле­ния значений изучаемых показателей в совокупности хозяй­ственных объектов или периодов. Таким образом, первой предпосылкой стохастического моделирования является воз­можность составить совокупность наблюдений, т. е. возмож­ность повторно измерить параметры одного и того же явления в различных условиях.

В стохастическом анализе, где сама модель составляется на основе совокупности эмпирических данных, предпосылкой получения реальной модели является совпадение количественных характеристик связей в разрезе всех исходных наблюдений. Это означает, что варьирование значений показателей должно происходить в пределах одно­значной определенности качественной стороны явлений, хара­ктеристиками которых являются моделируемые экономичес­кие показатели (в пределах варьирования не должно проис­ходить качественного скачка в характере отражаемого явле­ния). Значит, второй предпосылкой применяемости стохастического подхода моделирования связей является качественная однородность совокупности (относительно изучаемых связей).

Изучаемая закономерность изменения экономических пока­зателей (моделируемая связь) выступает в скрытом виде. Она переплетается со случайными с точки зрения исследования (неизучаемыми) компонентами вариации и ковариации показа­телей. Закон больших чисел гласит, что только в большой совокупности закономерная связь выступает устойчивее слу­чайного совпадения направления варьирования (случайной к­
вариации). Из этого вытекает третья предпосылка стохастичес­кого анализа —достаточная размерность (численность) сово­купности наблюдений» позволяющая с достаточной надежно­стью и точностью выявить изучаемые закономерности (моде­лируемые связи). Уровень надежности и точности модели определяется практическими целями использования модели в управлении производственно-хозяйственной деятельностью.

Четвертая предпосылка стохастического подхода — на­личие методов, позволяющих выявить количественные параметры экономических показателей из массовых данных варьирования уровня показателей. Математический аппарат применяемых методов иногда предъявляет специфические требования к моделируемому эмпирическому мате­риалу. Выполнение данных требований является важной предпосылкой применяемости методов и достоверности по­лученных результатов.

Основная особенность стохастического факторного ана­лиза заключается в том, что при стохастическом анализе нельзя составлять модель путем качественного (теоретичес­кого) анализа, необходим количественный анализ эмпирических данных.

Экономический анализ. Шпаргалки (24 стр.)

где у – результативный показатель; x i – факторы; ∆ y ( x i ) – отклонение результативного показателя за счет фактора х i .

Балансовый метод применяют также для определения размера влияния отдельных факторов на изменение результативного показателя, если известно влияние остальных факторов:

Метод меньших чисел используется при изучении ритмичности, или равномерности, работы предприятия, изучении ассортиментности выпуска продукции, структурных сдвигов в производстве. При использовании метода меньших чисел просчитывается коэффициент (К):

где Σ А – сумма фактических значений изучаемых показателей по периодам, но не выше плановых (базисных); Σ А 1 – сумма плановых заданий по периодам.

Метод среднего квадратического . Оценка ритмичности работы предприятия с помощью коэффициента вариации или среднего квадратического:

где Кр – коэффициент ритмичности.

где V – коэффициент вариации; σ – квадратическое отклонение; x ср – среднее значение показателей; x – фактическое значение показателей; n – количество периодов или показателей.

94. Стохастический факторный анализ

Стохастический анализ направлен на изучение косвенных связей – опосредованных факторов (в случае невозможности определения непрерывной цепи прямой связи). Из этого вытекает важный вывод о соотношении детерминированного и стохастического анализа: так как прямые связи необходимо изучать в первую очередь, то стохастический анализ носит вспомогательный характер. Стохастический анализ выступает в качестве инструмента углубления детерминированного анализа факторов, по которым нельзя построить детерминированную модель.

Стохастическое моделирование факторных систем взаимосвязей отдельных сторон хозяйственной деятельности опирается на обобщение закономерностей варьирования значений экономических показателей – количественных характеристик факторов и результатов хозяйственной деятельности.

В стохастическом анализе, где сама модель составляется на основе совокупности эмпирических данных, первой предпосылкой получения реальной модели является совпадение количественных характеристик связей в разрезе всех исходных наблюдений.

Второй предпосылкой применяемости стохастического подхода моделирования связей является качественная однородность совокупности (относительно изучаемых связей).

Изучаемая закономерность изменения экономических показателей (моделируемая связь) выступает в скрытом виде. Она переплетается со случайными с точки зрения исследования (неизучаемыми) компонентами вариации и ковариации показателей. Закон больших чисел гласит, что только в большой совокупности закономерная связь выступает устойчивее случайного совпадения направления варьирования (случайной к вариации). Из этого вытекает третья предпосылка стохастического анализа – достаточная размерность (численность) совокупности наблюдений, позволяющая с достаточной надежностью и точностью выявить изучаемые закономерности (моделируемые связи).

Четвертая предпосылка стохастического подхода – наличие методов, позволяющих выявить количественные параметры экономических показателей из массовых данных варьирования уровня показателей.

Читать еще:  Отчет анализ обеспеченности трудовыми ресурсами

95 Математико-статистические методы стохастического моделирования

В экономических исследованиях нашли применение следующие математико-статистические методы стохастического моделирования хозяйственных явлений и процессов: оценка связи и корреляции между показателями; оценка статистической значимости связей; регрессионный анализ; выявление параметров периодических колебаний экономических показателей; группировка многомерных наблюдений; дисперсионный анализ; современный факторный (компонентный) анализ; трансформационный анализ.

Необходимость включения математико-статистических методов в методику анализа хозяйственной деятельности предприятий зависит от значимости решаемых при помощи данных методов количественных (статистических) задач.

Можно выделить следующие наиболее типичные классы задач в экономическом анализе:

• изучение наличия, направления и интенсивности связи экономических показателей;

• изучение наличия, направления и интенсивности связи экономических показателей;

• ранжировка и классификация факторов экономических явлений;

• выявление аналитической формы связи между показателями;

• сглаживание (выявление тренда) динамики изменения уровня показателей;

• выявление параметров закономерных периодических колебаний уровня показателей;

• ранжировка и классификация хозяйств (предприятий и их подразделений);

• изучение размерности (сложности, многогранности) экономических явлений;

• выявление наиболее информативных (обобщающих) синтетических показателей;

• изучение внутренней структуры связей в системе экономических показателей;

• сравнение структуры связей в разных совокупностях.

Самая общая и типичная статистическая задача в экономическом анализе – изучение наличия, направления и интенсивности связей между показателями. Это первый этап познания закономерностей формирования результатов хозяйственной деятельности. Предположение о наличии и тесноте связи делается в случае выявления общих закономерностей в вариации значений изучаемых показателей. Задача экономического анализа – раскрыть качественную основу взаимосвязи между количественными характеристиками экономических процессов.

96. Методы стохастического факторного анализа

Самая общая и типичная статистическая задача в экономическом анализе – изучение наличия, направления и интенсивности связей между показателями . Это первый этап познания закономерностей формирования результатов хозяйственной деятельности. Предположение о наличии и тесноте связи делается в случае выявления общих закономерностей в вариации значений изучаемых показателей. Источник возникновения этих общих закономерностей может быть разным – причинно-следственная связь между показателями, зависимость от общего фактора, случайное совпадение элементов вариации.

Задача экономического анализа – раскрыть качественную основу взаимосвязи между количественными характеристиками экономических процессов.

Стохастическое исследование связи происходит с помощью методов корреляционного анализа – коэффициентов и отношений корреляции. При этом в зависимости от характера исходной информации применяются разные приемы корреляционного анализа:

• оценка парной корреляции между показателями с цифровой шкалой измерения;

• ранговая корреляция и коэффициенты, рассчитанные по так называемым матрицам сопряженности для анализа связей между

• каноническая корреляция для анализа связи между группами показателей;

• частная корреляция, которая позволяет исследовать связь между двумя показателями, элиминируя влияние других показателей;

• множественная корреляция для оценки зависимости одного показателя от группы аргументных показателей.

В случае нелинейности связи и при изучении множественной корреляции задача определения тесноты связи соотносится с проблемой изучения аналитической формы связи (коэффициент, или отношение, корреляции в этом случае прямо зависит от выбранной формы связи). Выявление аналитической формы связи означает моделирование хозяйственного процесса путем выявления закономерностей формирования значений результатного показателя под влиянием факторных показателей. Это основная и самая сложная задача в экономическом анализе, которая при стохастическом подходе решается методом регрессионного анализа.

97. Ранжировка и классификация факторов, классификация и ранжировка хозяйственных объектов

Изучение интенсивности и аналитической формы связей между показателями с помощью методов корреляционного и регрессионного анализа позволяет решать важную для экономического анализа статистическую задачу – ранжировку и классификацию факторов , влияющих на анализируемое экономическое явление. Можно выделять существенные и несущественные для данного явления факторы, группу факторов, позволяющих с достаточной точностью управлять функционированием экономических систем, а также ранжировать факторы по интенсивности их влияния на изучаемое явление или процесс.

Стохастический анализ в экономике

Дисциплина «Стохастический анализ в экономике» входит в базовую часть профессионального цикла дисциплин по направлению подготовки 38.03.01 «Экономика». Дисциплина реализуется на факультете экономики кафедрой математической экономики.

«Стохастический анализ в экономике» как учебная дисциплина обеспечивает приобретение студентами знаний в области исследования стохастических событий в экономике, влияния случайных факторов на экономические процессы, формирование практических навыков применения современных средств обработки информации, имитационного моделирования стохастических процессов, оценки их параметров, что позволяет прогнозировать и выстраивать финансовую и экономическую стратегию предприятий в условиях сильной волатильности внешних факторов, Сведения, излагаемые в курсе, должны облегчить слушателям знакомство с современными работами в этой области, а также помочь им проводить самостоятельные исследования, направленные на изучение, объяснение и прогнозирование событий в экономике и на финансовых рынках и их влияния на общий ход экономического развития.

В результате изучения дисциплины «Стохастический анализ в экономике» студент должен иметь представление и знать о методах построения математических моделей и инструментах их исследования, в частности, понятие об оценке стохастических экономических параметров, основы тории случайных процессов, необходимые для оценки состояния и прогноза развития экономических явлений. Уметь применять методы анализа и моделирования случайных процессов для решения экономических задач. Иметь навыки (приобрести опыт) применения современного математического инструментария для решения экономических задач. Студент должен успешно уметь разрешать различные практические ситуации на основе приобретения теоретических знаний, иметь навыки работы с данными, учебной и научной литературой, уметь пользоваться прикладными пакетами для анализа случайных процессов в экономике.

В содержание дисциплины «Стохастический анализ в экономике» входит изучение следующего круга вопросов: Основные понятия теории случайных процессов. Многомерные плотности вероятности и их свойства. Статистические характеристики случайных процессов. Гауссовские случайные процессы. Совокупность случайных процессов. Свойства случайных процессов. Спектрально – корреляционный анализ случайных процессов. Марковские процессы и их применение в экономике. Задача прогнозирования экономических параметров предприятия с использованием матрицы перехода. Уравнение Колмогорова–Чепмена. Классификация состояний МЦ. .Случайные блуждания и анализ доходности ценных бумаг. Задача о разорении. Ожидаемая продолжительность игры. Оптимальные стратегии в марковских цепях. Ожидаемая отдача, асимптотическое поведение. Правила принятия решений. Непрерывные марковские процессы. Обратное уравнение Колмогорова. Уравнение Колмогорова–Фоккера–Планка. Точечные случайные процессы. Пуассоновский случайный процесс. Процессы гибели и размножения. Ветвящиеся процессы. Прикладные инструменты исследования стохастических процессов в пакете Matlab.

Ссылка на основную публикацию
Adblock
detector
×
×