Star-company.ru

Лайфхаки от Кризиса
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Методы прогнозирования в макроэкономическом анализе

Методы макроэкономического планирования и прогнозирования

Главная > Лекция >Математика

ТЕМА 3: Методы макроэкономического планирования и прогнозирования.

Методы макроэкономического прогнозирования

Под методами прогнозирования понимается совокупность приемов и способов мышления, позволяющих на основе анализа ретроспективных данных, внешних и внутренних связей объекта прогнозирования, вывести суждения, с определенной степенью достоверности, относительно будущего развития объекта.

При использовании моделей в экономических расчетах все величины характеризующие моделируемые объекты, подразделяются на:

экзогенные или входные – известные, т.е. рассчитываемые вне модели;

эндогенные, или выходные — неизвестные, т.е. определяемые в процессе решения задачи и получаемые в пределах самой моделируемой системы.

Эндогенные факторы взаимосвязаны прямыми и обратными связями , а экзогенные не испытывают обратного воздействия (в рамках данной модели). Для экономико-математического моделирования разделение переменных эндогенные и экзогенные в значительной мере произвольно и определяется характером решаемой задачи. Вся совокупность методов прогнозирования группируется по следующим признакам:

по способу получения и обработки информации: статистические методы, методы аналогий, опережающие методы;

по степени формализации: формализованные и интуитивные;

по общему принципу действия;

по направлениям и назначению прогнозирования;

по процедуре получения параметров прогнозной модели и др.

По способам получения и обработки информации выделяются следующие методы прогнозирования: статистические методы, методы аналогий, опережающие методы.

Статистические методы — система приемов, способов обработки информации, направленных на получение количественных закономерностей, проявляющихся в структуре, динамике и взаимосвязях прогнозируемых массовых социально-экономических явлений.

Метод аналогий – построен на получении прогнозов построенных на логическом выводе, из которого знание о прогнозируемых процессах возникает на основе известного сходства закономерностей развития одних процессов с другими. Это свойство позволяет после исследования делать выводы, хотя и не окончательные, и не доказательные в полном смысле этого слова. Существуют следующие три вида аналогий: аналогия свойств, аналогия отношений и изоморфизма. Принцип изоморфизма положен в основу разработки экономико-математических моделей прогнозирования социально-экономического развития.

Опережающие методы прогнозирования базируются на определенных принципах специальной обработки научно-технической информации, реализующих в прогнозе ее свойство отражать новые тенденции закономерностей развития объекта прогнозирования.

В свою очередь их можно разделить на методы исследования динамики развития объекта и методы исследования и оценки уровня развития объекта.

Формализованные методы прогнозирования

Формализованные методы прогнозирования базируются на построении прогнозов формальными средствами математической теории, которые позволяют повысить достоверность и точность прогнозов, значительно сократить сроки их выполнения, облегчить обработку информации и оценки результатов.

Читать еще:  Экономический анализ и менеджмент

В состав формализованных методов прогнозирования входят: методы интерполяции и экстраполяции, метод математического моделирования, методы теории вероятностей и математической статистики.

Методы интерполяции и экстраполяции .

Сущность метода интерполяции заключается в нахождении прогнозных значений функций объекта yi=f(xj), где j=0,…n , в некоторых точках внутри отрезка х0 ,… хn по известным значениям параметров в точках х 0∠ х ∠ хn

Основные условия, предъявляемые к функциям при интерполяции:

функция должна быть непрерывна и аналитична;

для конкретного вида функций или их производных указаны такие неравенства, которые должны определить применимость интерполяции к данной функции;

функция должна быть в достаточной степени гладкой, т.е. чтобы она обладала достаточным числом не слишком быстро возрастающих производных.

В прогнозировании наиболее широко применяются интерполяционные формулы Лагранжа, Ньютона, Стирлинга и Бесселя.

Метод экстраполяция — это метод научного исследования, заключающийся в распространение тенденций, установленных в прошлом, на будущий период. Математические методы экстраполирования сводятся к определению того, какие значения будет принимать та или иная переменная величина Х=x(t1) , если известен ряд ее значений в прошлые моменты времени х1=x(t1) ,……. x(tn-1) → x(tn)

В узком смысле слова экстраполяция — это нахождение по ряду данных функции других ее значений, находящихся вне этого ряда. Экстраполяция заключается в изучении сложившихся в прошлом и настоящем устойчивых тенденций экономического развития и перенесении их на будущее. В прогнозировании экстраполяция применяется при изучении временных рядов и представляет собой нахождение значений функции за пределами области ее определения с использованием информации о поведении данной функции в некоторых точках, принадлежащих области ее определения.

Различают перспективную и ретроспективную экстраполяцию.

Перспективная экстраполяция предполагает продолжение уровней ряда динамики на будущее на основе выявленной закономерности изменения уровней в изучаемом отрезке времени. Ретроспективная экстраполяция характеризуется продолжением уровней ряда динамики в прошлое.

Существует формальная и прогнозная экстраполяции. Формальная экстраполяция базируется на предположении сохранения в будущем прошлых и настоящих тенденций развития объекта. Прогнозная экстраполяция увязывает фактическое состояние исследуемого объекта с гипотезой о динамике его развития. Она предполагает необходимость учета в перспективе альтернативных изменений самого объекта, его сущности.

При разработке прогнозов с помощью экстраполяции исходят из статистически складывающихся тенденций изменения тех или иных количественных характеристик объекта. Экстраполируются оценочные, функциональные, системные и структурные характеристики, например, количественные характеристики экономического, научного, производственного потенциала. Степень реальности таких прогнозов в значительной мере обусловливается обоснованностью выбора пределов экстраполяции и соответствие выбранных «измерителей» сущности рассматриваемого явления. Последовательность действий при статистическом анализе тенденций и экстраполировании заключается в следующем:

Читать еще:  Индексный факторный анализ производительности труда

1. Формулирование задачи, выдвижение гипотез о возможном развитии

прогнозируемого объекта, обсуждение факторов, стимулирующих или препятствующих

развитию объекта, определение экстраполяции и ее допустимой дальности.

2. Выбор системы параметров, унификация различных единиц измерения,

относящихся к каждому параметру в отдельности.

3. Сбор и систематизация данных, проверка однородности данных и их

4. Выявление тенденций изменения изучаемых величин статистического анализа и

непосредственной экстраполяции данных.

В экстраполяционных прогнозах предсказание конкретных значений изучаемого объекта или параметра не является основным результатом. Более важным является своевременное выявление объективно намечающихся сдвигов, закономерных тенденций развития явления или процесса. Под тенденцией развития понимают некоторое его общее направление, долговременную эволюцию. Обычно тенденцию стремятся представить в виде более или менее гладкой траектории.

Для повышения точности экстраполяции тренд экстраполируемого явления корректируется с учетом опыта функционирования объекта — аналога исследований или объекта, опережающего в своем развитии прогнозируемый объект. В зависимости от того, какие принципы и какие исходные данные положены в основу прогноза, существуют следующие методы экстраполяции: среднего абсолютного прироста, среднего темпа роста и экстраполяция на основе выравнивания рядов по какой-либо аналитической формуле.

Рассмотренные способы экстраполяции тренда, будучи простейшими, в то же время являются и самыми приближенными. Поэтому наиболее распространенным методом прогнозирования является аналитическое выражение тренда.

Тренд экстраполируемого явления — это длительная тенденция изменения экономических показателей, т.е. изменение, определяющее общее направление развития, основную тенденцию временных рядов. Тренд характеризует основные закономерности движения во времени, в некоторой мере свободные от случайных воздействий. При разработке моделей прогнозирования тренд оказывается основной составляющей прогнозируемого временного ряда, на которую накладываются другие составляющие. Результат при этом связывается исключительно с ходом времени. Предполагается, что через время можно выразить влияние всех основных факторов.

Разработка прогноза заключается в определении вида экстраполирующей функции на основе исходных эмпирических данных и параметров.

Первым этапом является выбор оптимального вида функции, дающей наилучшее описание тренда. Следующим этапом является расчет параметров выбранной экстраполяционной функции.

Читать еще:  Методы и приемы анализа активов баланса

При оценке параметров зависимостей наиболее распространенными являются

метод наименьших квадратов, метод экспоненциального сглаживания временных рядов,

метод скользящей средней и другие.

Сущность метода наименьших квадратов состоит в том, что функция, описывающая прогнозируемое явление, аппроксимируется более простой функцией или их комбинацией. Причем последняя подбирается с таким расчетом, чтобы среднеквадратичное отклонение фактических уровней функции в наблюдаемых точках от выровненных было наименьшим.

Например, по имеющимся данным ( xiyi ) ( i=1,2,….n ) строится такая кривая y=a+bx, на которой достигается минимум суммы квадратов отклонений т.е. минимизируется функция, зависящая от двух параметров: а – (отрезок на оси ординат) и b (наклон прямой).

Уравнение, дающие необходимые условия минимизации функции S(a,b), называются нормальными уравнениями. В качестве аппроксимирующих функций применяются не только линейная, но и квадратическая, параболическая, экспоненциальная и др.

Метод наименьших квадратов широко применяется в прогнозировании в силу его простоты и возможности реализации на ЭВМ. Недостаток данного метода состоит в том, что модель тренда жестко фиксируется, а это делает возможным его применение только при небольших периодах упреждения, т.е. при краткосрочном прогнозировании.

Метод экспоненциального сглаживания временных рядов – этот метод является модификацией метода наименьших квадратов для анализа временных рядов, при которой более поздним наблюдениям придается больший вес, т.е. веса точек ряда убывают экспоненциально по мере удаления в прошлое. Этот метод позволяет оценить параметры модели, описывающей тенденцию, которая сформировалась в конце базисного периода и не просто экстраполирует действующие зависимости в будущее, а приспосабливает, адаптирует к изменяющимся во времени условиям. Метод экспоненциального сглаживания применяется при кратко- и среднесрочном прогнозировании. Его преимущества состоят в том, что он не требует обширной информационной базы.

Модели, описывающие динамику показателя, имеют достаточно простую математическую формулировку, а адаптивная эволюция параметров позволяет отразить неоднородность и текучесть свойств временного ряда.

Метод скользящей средней заключается в том, что вычисляется средний уровень из определенного числа первых по порядку уровней ряда, затем средний уровень из такого же числа уровней, начиная со второго, далее — начиная с третьего и т.д. Таким образом, при расчетах среднего уровня как бы «скользят» по ряду динамики от его начала к концу, каждый раз отбрасывая один уровень вначале и добавляя один следующий.

Ссылка на основную публикацию
Adblock
detector